Lung Sound Recognition Using Model-Theory Based Feature Selection and Fusion

نویسندگان

  • Zbigniew Korona
  • Mieczyslaw M. Kokar
چکیده

In this paper we describe the application of a new automatic signal recognition methodology to the recognition of lung sounds. Two main features of this methodology are: the use of symbolic knowledge about the signal sources (in addition to sensory inputs), and fusion of multisensor information. We show steps involved in the design of an automatic multisensor recognition algorithm that extracts symbolic features and utilizes symbolic knowledge for recognition. We also compare the performance of the resulting algorithm with both a single-sensor system and with a system that selects features using an entropy-based criterion. To evaluate the methodology we used both normal lung sounds (bronchial and vesicular) as well as adventitious sounds (rhonchi, wheezes and crackles). Our experiments show that the recognition accuracy can be improved through the use of symbolic knowledge about the signals, and that our methodology is feasible for this type of application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

Model Theory Based Fusion Framework with Application to Multisensor Target Recognition

In this work, we present a model theory based fusion methodology for multisensor wavelet-features based recognition called Automatic Multisensor Feature-based Recognition System (AMFRS). The goal of this system is to increase accuracy of the commonly used wavelet-based recognition techniques by incorporating symbolic knowledge (symbolic features) about the domain and by utilizing a model theory...

متن کامل

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

Model Based Fusion for Multisensor Target Recognition

A multisensor feature-based fusion approach to target recognition using a framework of model-theory is proposed. The Best Discrimination Basis Algorithm (BDBA) based on the best basis selection technique and the Sensory Data Fusion System (SDFS) based on logical models and theories are applied for feature extraction. The BDBA selects the most discriminant basis. The SDFS rst selects features, w...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007